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where A1~ — c N1, N~ >, B1 c N1, L(v) + f >.

The method chosen for solution of stiff systems (*) is a version of

Gear ’s method which solves the system in its implici t form. This leads

to the necessity of being able to solve (repeatedly) linear algebraic

equations whose coefficient matrix has the same sparse and banded nature

as (A1~ ).

Storage requirements for vari ous orders of polynomial triangular elements

under compact storage mode, profile storage mode, and banded syninetric

storage mode are given and compared. For large systems ( *) ,  compact storage

mode leads to signi ficantly reduced requirements . Consideration o~ the

linear algebraic sys tems which arise in Gear 1s method reveals that iteration

should be computationally efficient. A comparison between various solution

methods is given for a nonlinear reactor dynamics problem. Associated

with each solution method is a different s tarage mode.
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AN EFFICIENT METHOD FOR ’SOL V ING STIFF TRANSIENT

FIELD PROBLEMS ARISING FROM FEN FURMULATIONS*

- by

Richard Franke~’
S Dept. of Mathematics , Naval Postgraduate School , Monterey, CA, 93940

and 
-

- . 
David Sai1nas~/

Dept. of Mech. Engineering, Naval Postgraduate School, Monterey, CA 93940

ABSTRACT -

We consider the r.onl Inear differential equation ~~~~~
. L(u) + f(t).

Use of Galerkin FEll with u.(x, t) v (x , t) — £ ‘v4(t)r14(x), where the
- 

j a ~~~~~~ ‘~~~

N (x) are specified basis functions, results In the Implicit system of
n

ordinary differential equations, (*) £ A1J ~ - B1(~1,..., ~~~~ — 0,
i — I

I — 1, ..., n, where A1J — <N 1, N~>~ B1 — <N 1, L(v) + f>.

The method chosen for solution of stiff systems (*) is a version

of Gear ’s method which solves the system In Its Implicit form. 
- 
This

leads to the necessity of being able to solve (repeatedly) linear

algebraic equations whose coefficient matrix has the same sparse and

banded nature as (Ajj) . -

Storage requirements for var ious orders of polynomial tr iangu lar

elements under compact storage mode, profile storage mode, and banded 

-

*presented at the Second International Conference on Computatt
Methods In Nonlinear Mechanics, Mar. 26-30, 1979. Univ. of Texas,
Austin, Ix.

~
6
Supported by the Foundation Research Program at the Naval Post-

graduate School .

~Associata Professors. -3..

- - - - S - ~~~r ~~~~~~~~~~~~~~~~~~
- ~—.~~~~~.-___ 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

~~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~- 
- 

~~~~~~~~~~
-
~

-- -



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
-- - - -  ____-

symmetric storage mode are given and compared. For large systems ( *) ,

compact storage mode leads to significantly reduced requirements.

Consløeratlon of the linear algebraic systems which arise in Gear’s

method reveals that Iteration should be computatlonally efficient. A
— comparison between var ious solution methods Is given for a nonlinear

reactor dynamics problem. AssocIated 11th each sol ution method Is a

different storage mode.
/ (

1. Discription of the Problem

We consider a nonlinear p.d.e. of the parabolic type,

• f t_ L(u) +f  x c D , t e t  (1)

with appropriate Initial and boundary conditions, and L denotes spatial

operators. In accordance with a weighted residual FEM formulation, an

approximate solution v(x,t) In the form

u(x , t) ‘v(x,t) — E yj(t)Nj(x) (
~

)
•J — l

- .  

Is assumed. In Eq. (2), N~(x) are a set of specified interpolation

functions with local support, and the ~4(t) are the solution coefficients‘a

to be determined. Setting the residual function

R(x, t) ft~ 
L(v ) - f • (3)

orthogonal to each of the weighting functions W1 (x ) , I • 1, ... ,

I.e.

<R, WI> — U, I — 1, ..., n (4)

-4-
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yields the system of nonlinear o.d~e.,

£ A1~ ~ 
- ~~~~~~~~~~~ f) • 0 (5)

S i — I

• with Initial conditions, where

— 

~~~ 
N~> -

• 
- . (6)

B~ — <L(v ) + f ,W 1> J
Out objective is to select a method of solution of Eq. (5) which is

efficient wi th respect to memory core requirement, and computational
• effort . With regard to core requirement, an efficient strategy should

take into account the nature of the (A 1~ ) matrix. If the weighting
functions have local support, A will be sparse and banded. If a Galerkin
formulation is employed, W.1 - N1, and the (A1~)matr1x is synetetric. In
general the sparseness of (A 1~) increases with finer mesh discretization,
as well as space dimensionality. Bandwidth and sparseness increase wi th
higher order polynomial interpolation elements, but fewer are required to
provide an accuracy achieved by lower order elements. The question of
which Is more efficient, higher or l ower order el ements, is not addressed

• hare. .

- 

Attention Is given here to a stiff system arising from a FEll formu-

lation of a two dimensional nonllnear nuclear reactor dynamics problem

fi]. Here L(u) is given by

1(u) — -au
2 + bu + cà2u (7)

with appropriate initial and boundary conditions. In this case, Eq.

(5) becomes, after an integration by parts on the term,

+ IZZCIJkYJY k - bZA 1~~ + CEB1JYJ • 0 (8)

S

—5—
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where

A 13 
- <N 1, N3

> 
-

,

Clik — <Ni., Nj~> (9)

- 

~~ 3N aN1 ~N
B — < —  —~~> + <— i,
13 ax ’ax ay ’3y

I-

2. Solution Techniques for the Implicit System of O.D.E.’s

Consideration of various schemes for the solution of the implicit

system of ordinary differential equations given by Eq (5) reveals tha t

no matter what type of scheme is employed, it will involve the solu-

tion of a system of algebraic equations, ~osslbly .ionl inear If (Si ) Is

nonlinear. Use of even a simpl e scheme for explicit systems of dif-

ferential equations, e.g., Euler ’s method, requires repeated solution

of a system of linear equations with coefficient matrix (A13) for the

• 
~
, given y, , 

~~~~
, and t. If a predictor-corrector method (or

any method involving derivatives at the new time, generally called an

• impl icit numerical method) for explicit systems of differential equa— 
- 

- -

tions is used, a second system of algebraic equations arises for thè

dependent variabl es at the new time. - Because of this second system of

algebraic equations it is best to avoid having to solve (5) for

derivatives by employing an ordinary diffentlal equation sol ver

designed for implicit systems of equations. •

Given that an Implicit method will be employed to solve the system

(5) there are three levels of matrix storage that are required: (1)

That required by the system matrices (A13
) and (B 1 ) (We are not

being specific here about the form of (B1); it may involve several con—

stant matrices or may be a function of time); (2) That required by the

-6-
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differential equation solver; and (3) That riquired to represent the

algebraic system of equations for y1, .. ., ~ at the next time in the

• form required by the algebraic equation solver being used. The

hierarchy of storage level s is shown schematically In Figure 1 , alon g

with possible options for differential equation solvers and algebraic

equation solvers , with the preferred storage-mode shown in parenthesis.

Level 1: ~ystem Matrices: (A 13 ), (Compact)

ci, (B1), (Compact or ?)

Level 2: ODE Solver: e.g. Implicit Gear (Full ,

1 Crank—NIcol son nx?)

- others

Level 3: Al ebra ic E ua tion Solver

Linear Case Nonlinea r Case

Direct Methods Iterative Methods Newton ’s Method, - Iterative

~~~/
/‘ ~ (Compact) or others leading not l eading

(Ba nded ) (Profile) (Compact) 
- ~to linear systems to linear systems

- 
(See Linear) (Compact)

Figure i 

L_
~~

_ J

It is difficult to show all the possible OptlQfls and FIgure 1 is not

meant to excl ude any, but rather to emphasize several points. (1) The

system matrices are used only In evaluation of the left side of (5) and

• can be stored In any fo rm, some form of compact storage being efficient .

(2) The differential equation solver will have Its own requirements for

storing the solution values, past history, and auxiliary storage.

- —  I - -  

- - . _ _ _ _  
~~~~~~~~~~~ .5 5S~~~~
; 
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(3) The choice of solution method for the algebraic equations will

determine the type of storage required at l evel 3. In some Instances

the latter choice may be determined by the differential equation solver,

and could require no additiona l storage in some cases, but a more usua l 
S 

-

situation will be where at least one natrix must be stored.

Because the problems i.n -which we are Interested are typically stiff

we were led to Gear ’s method, whIch performs welL This method was

used in a form designed for implicit systmi s of differential equations

E2], and Is based on E3]. Gear ’s method Is a variabl e order, variabl e

stepsize, predictor-corrector scheme. The derivatives at the new time

are approximated by a backwards difference formula , and the resulting

corr ector equation is solved by a quasi—Newton ’s method. This leads

to repeated solution of equations of the form J6y 2 p, where the

solution 5y represents incremental corrections to the solution values .

For Eq. (5), J — (—~A~ - ~~~~ where h Is the current setpsize and s

is a constant dependent on the current order formula being applied .

I- . Our version is designed to facilitate easy incorporation of what-

F -  . - ever solution scheme and associated storage scheme is suitabl e for

“ ‘ttlese linear systems. Since the user must supply a subprogram to

evaluate the matrix J, it is then relatively simple fct the user

to store the matrix in a form compatibl e with the equation solver

being used. -

In our scheme, the amount of storage required at level 2 is

approximately 20 n words. Level 1 storage is dependent on the
• 

• 

problem , and l evel 3 storage on the linea r equation solver incor-

- 
- porated Into the method. The details for a specific problem are

discussed in Section 4.

-8-
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3. Storage Schemes

• The most coninon method of storing matrices in FEll, Is the banded

storage scheme, whereby the ‘- ndwidth (or hal f bandwidth In the case

of syimnetric matrices) terms are stored. Some reduction in storage is

obtained by profile (or skyline) storage. In this scheme, some of the

zero terms within the band are el iminated . Band and profile storage

are schematically shown in Figure 2-. -

- 

~~~~~~~~~~ _ _ _  ~

_ _ _

I b l~ ‘b 2~I 2~ il

Syninetric Banded Grid (R2 , 5*3, t~’2) Prof
Figure 2

For large systems, the storage allocated to zero terms by either the

band or profile scheme comprises a large fraction of the total storage.

Thus, a compact storage scheme, which stores only the non-zero coeffi-

cients of a matrix provides a substantial reduction in core require-

ments for large systems. -

The impl ementation of compact storage requires two integer array 
•

vectors, say ISTART and NAME, and a vector of the non zero coefficients,

say AA . The ~th Integer entry in ISTART is the number q1, where

i — i
E P4 +l (10)

- i — i  ‘a

and P,1 Is the number of terms In the ,1th equation (i.e. the number of

nodes connected to the 3th node). In n Is the number of unknowns in

the system, the len gth of ISTART Is (n + 1). ISTART then, is a pointer

-9-
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vector whose 3
th term locates the initial pos1tiot~ in the AA vector of

the contributing coefficients to the ,~th equation. The M x 1 NAM E

— 
vector, where

M — 

~ 

~ 

• 

(11)

is composed of n successive vector blocks of variabl e l ength 
~j: 

The

P3 integers in the 3
th block of NAME Identify the contributors to the

3th equation. The M x  1 vector AA, contains the real non-zero coeffi-

cients of the n x n A matrix, arranged in the same contiguous block

arrangement as the NAME vector.

A comparison of the core requirements of a syninetric banded matrix

using banded, profile and compact storage follows. To fix Ideas, we

consider a simpl e rectangular domain with R rows of elements, and S

columns of elements. The ëlass of triangular elements with polynomial

interpolation are considered . The formulas presented are for the case

where interior nodes are condensed out. The following notation is used.

n - the number of unknowns

• n5 — the hal f bandwidth for a symmetric matrix

- 
• t — the order of polynomial Interpolation

R — the number of rows of elements In the rectangular grid

S - the number of columns of el ements in the rectangular grid

— symmetric band storage

- profile storage

N
~ 

- compact storage
- bytes per word for real numbers

B - bytes per word for integer numbers

To obtain minimum bandwidth , numbering of nodes is sequential In the

vertical direction if R < S, and vice versa if S > R, for profile and

-10-
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banded storage. The numbering sequence for compact storage Is irrele-

vant. For an R x 

:RS(3t_ 2 ) + (R + S)~~~
_ 2t) :(t-i) (12)

For very large systems, i.e. RS >> (R + S),

n : RS( 3t - 2) (13)

The core requ irement for each of the stora ge schemes, for R < S, is

• a) banded storage

— ann5 
/ 

(14)

where,

n5 — 3 R t - 2 R - t + 3  (15)

For very large systems

f o r t - i  (16)

N5 I6ciR2S f o r t — 2

N5 :4gcxR
2s fort — 3

b) profile storage

(17)

where

CR- 2~(R - 1) 
~
2 + CR - 2)(R - l)(t - l)t (S - 1)

(18)

(R — 2)(t—l)t(s — 1) 
+ 
[2R(t — 1) + l][2R(t — 1) + 2i(5 2)

+ 2 . 2

For very large systems

N
~~~

czR2S t — l

l2csR2S t — 2 (19)

N~~:35~R
2s t 3

-- 

5 — 11—

-~~~~~~
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c) compact storage -

• N
~~
.
~~
M + B ( M+ n + 1 )  (20)

where

M — RS (l 5t~ - 6t - 2) + (R + S)(-14t 2 + 8t + 2) (21 )

+ (11t2 — io t— 1 )

For very large systems -

Nc Z RS(7a + 88)

N
~ 

Z RS(46ct + SOB) t — 2 (22)

RS(115a + 1228) 
- 

t — 3

d) Compar ison of N~, N~ and N
~ 
for large systems.

It is noted that banded and profile storage are proportional

to R2S, while compact storage is proportional to RS. The following

formu las compare the relative core requ irements for banded, profile

and compact storage schemes.

I) Savings of profile compared to banded storage

J I 
10.0

_ _ _ _ _  
: 0.25 t — 2  (23 )

N5 1 0.29 t — 3  
-

11) Savings of compact compared to profile

1 R oR t l

_ _ _ _ _  
Z 23 258 

-

N
~ 

1 -
~~~~~~

-
~~~~~~ 

t — l  
(24)

23 12281 t 3

~~~~~~~~~~~~~~ ~~~•
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To fix ideas, say 8 — ~a, then for large systems

~t 
11

t — l
N~~

_ N
5 

•

~~~ 71— 
~ t — 2  (25)

352- 
-

- 1 7~ t — 3

It should be noted from Eq. (24), that bar*ied and profile storage is

less than compact storage for small systems: For example, in the case

of t — 1, banded and profile storage is more efficient when 1 < (
~
. +

i.e., when R < 11 in the case t 1 and B — a/2.

4. Numerical Resul ts for an Exampl e Problem

We consider the example given by Eq. (7), resulting In the ordinary

differential equations (8)~. The domain was a rectangle which was

discretized with 11 rows and 12 columns, giving 132 nodes and 220 ele—

ments. There were 22 boundary nodes (fixed values). Using linear

triangular elements, a system of 110 differential equations was obtained.

The three dimensional array (Clik) required special consideration for

Its storage. We noted that 
~ ~

• 3—1 k*l hj k
5-
~fk — 

jrnl k~j~~
3
~

’3
5-
~

where -

I C13~ 3 — k

D ‘~~~ (26)

( u k  ikj

Because of the regular rectangular grid employed here, each

— 

equation contains no more than 7 tens . To facilitate - -indling of the

nonlinear term, seven entries were allotted to each block of the NAME

-13- -
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array (i.e. P
3 

— 7 for all 3). For equations with q contributing terms,

where q < 7, there were (7 - q) null entries in the NAME array. For the

nonl inear term given by Eq. (26), the number of non zero coefficients In

any equation is no more than 28, the number of combi na tions of seven

nodes taken two at a time (I.e. Clik + C
Iki
, 3 < k) plus the seven

diagonal terms C133. Thus, the nonlinear term requires 28n words. -

Each of the (A4 ) and (B44) matrices requires in words. Total level 1
‘ Si S li /

storage required is 42na bytes plus m B  bytes for the NAME array; the

jSTART array Is not required for this moalfied compact storage scheme.

The ,3 matrix that ar1~es in this. probl em Is (
~,
Au — bA13 + CBij +

2aL Cj4kYk). The matrix can be stored in compact form using the same
k—i ‘a

NAME array as for (A
~j
).

Three different linear equation solvers were considered, along with

their associated storage schemes for J. The first, was- the IMSL paIr

LUDAPB/LUELPB for matrices In symmetric banded storage form. The half

bandwidth for our sample problem was 12, thus in this case 12n 1320 
- 

-

• words were required. No additional working storage is required by

LUDAPB since it performs an In-place decomposition of J. In the

genera l case, storage requirements for the 4 matrix are those for a

symmetric banded matrix as given by Eqs. (14) and (15).

The second equation solver used was an iterative method, SOR, for

which compact storage was used. This required in - 770 words. In

general., storage requirements for the 4 matrix in compact form are

given by Eq’s (20 and (21). SOR, of course, does not requ ire any

additional working storage.

The third equation solver considered was the syimnetric form of

—14—
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the Yale Sparse Matrix Package [4].. This required 4 to be stored in a

symmetric form of the compact storage descri bed in Section 3, and for

our case required 399 words to store 4, plus 510 words to store the

NAME and ISTART arrays. In addition, approximately 1500 words were

required to store the decomposition of 4, along with the NAME and

ISTART arrays. In genera l , storage for the Yal e Sparse Matrix Package

should be much less than that for the pr~file scheme given by

Eqs (17) and (18), since a reordering of rows/columns to minimize

fill—in during the matrix factorization is done.

The particular problem we have used as an example was designed to

illustrate the feasibility of using the three different storage/solution

schemes, and the computational times and storage here a~e not likely

to be representative of what might happen in larger problems. In

particular, the relatively small bandwidth favors the syimnetric band

storage mode in computational effort. -

The 5CR method must converge very rapidly to be competitive- in

computational effort, since about 7n operations’are requ ired per
Iteration, whereas about 2n5n (after factorization of J) are required

for solution with symmetric banded matrices of hal f bandwidth n~.

Somewhat fewer operations are required for the Yal e Sparse Matrix

Package. For our case, SOR requires more computational effort than

direct methods when the number of iterations for convergence exceeds

4 (i.e. when inN1 > 2n5n, where n5 is 12 and N1 is the number of

iterations), although this is offset by the need to factor 4 each tim:

it Is recomputed. Since the solution dy of ~he system Jay — p

method increments for the corrector equation, the accuracy requ iremen ts

are low, and SOR requires few Iterations for convergence. The results

L 
_ _ _ _ _ _  
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of our example should be observed with the above considerations In mind .

All times were obtained on the IBM 360 model 67, us ing the Fortran H

compiler. 
- 

-

run s accuracy
required in lii DAPB/LJJELPB YALE SOR
Gears Method

.1 - - 30.0 34.8 26.2

.01 48.7 41.1 50.1

.001 66.6 71.0 57.0

Table 1

For systems with large bandwidths, we expect the computational

effort required for both the Yale Sparse Matrix Package and SOR to be

superior to the symmetric banded scheme.
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